6. Software Engineering for students: A Programming Approach by Douglas Bell, Pearson publication.

Assessment:

Internal:

Assessment consists of two tests (T1 and T2) .The final marks should be the average of the two tests.

End Semester Theory Examination: guidelines for setting up the question paper.

- 1. Question paper will comprise of total six questions.
- 2. Question Number One should be compulsory.
- 3. All question carry equal marks.
- 4. Students can attempt any three from the remaining.
- 5. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3).

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

Subject Code Subj			ect Name						Credits				
MCA103 Con			puter Organization and Architecture						04				
Subject Subjec Code		Subject	ubject Name		Schem	Teaching Scheme Theory Pract		Ass		edits signed eory	TW	Tut.	Total
MCA103		ComputerOrganizationArchitecture			04	y		04				04	
Subject Code	Subject Name Examina			ation Scł	tion Scheme								
MCA Co		Computer Theory N Organization		Marks					ΤW	Pract	Oral	Total	
	and Architecture		ure	Internal Assessment				End Semester Exam					
				Test1 (T1)	Test2 (T2)		erage of & T2						
				20	20	20		80		-	-	-	100

Pre-requisites:

Basic knowledge of Computer Fundamentals

Course Educational Objectives (CEO):

University of Mumbai, MCA Sem I and Sem II Rev. 2016-17

CEO1	To have a understanding of Digital systems and operation of a digital computer.				
CEO2	To learn different architectures & organizations of memory systems, processor				
	organization and control unit.				
CEO3	To understand the working principles of multiprocessor and parallel organization's				
	as advanced computer architectures				

Course Outcomes: At the end of the course, the students will be able to:

MCA103.1	Design trade-offs Basic fundamentals in digital logic & structure of a digital computer
MCA103.2	Identify performance issues in processor and memory design of a digital computer.
MCA103.3	To Develop independent learning skills and be able to learn more about different computer architectures and hardware.
MCA103.4	To articulate design issues in the development of Multiprocessor organization & architecture.

Syllabus

Sr.	Module	Detailed Contents	Hrs			
<u>No.</u>	Fara da ara ara 4 a la	Destan Alestre Lesie Ceter Simulification of Lesie				
1	Fundamentals	Boolean Algebra, Logic Gates, Simplification of Logic	12			
	of Digital	Circuits: Algebraic Simplification, Karnaugh Maps.				
	Logic	Combinational Circuits : Adders, Mux, De-Mux, Sequential				
		Circuits : Flip-Flops (SR, JK & D), Counters : synchronous				
		and asynchronous Counter				
2	Computer	Comparison of Computer Organization & Architecture,	06			
	System	Computer Components and Functions, Interconnection				
		Structures. Bus Interconnections, Input / Output: I/O Module,				
		Programmed I/O, Interrupt Driven I/O, Direct Memory Access				
3	Memory	Classification and design parameters, Memory Hierarchy,				
-	System	Internal Memory: RAM, SRAM and DRAM, Interleaved and				
	Organization	Associative Memory. Cache Memory: Design Principles,				
	o gamenton	Memory mappings, Replacement Algorithms, Cache				
		performance, Cache Coherence. Virtual Memory, External				
		Memory : Magnetic Discs, Optical Memory, Flash Memories,				
		RAID Levels				
4	Processor	Instruction Formats, Instruction Sets, Addressing Modes,	12			
-	Organization	Addressing Modes Examples with Assembly Language	14			
	Organization	[8085/8086 CPU], Processor Organization, Structure and				
		Function. Register Organization, Instruction Cycle, Instruction				
		Pipelining. Introduction to RISC and CISC Architecture,				
		Instruction Level Parallelism and Superscalar Processors:				
	~	Design Issues.				
5	Control Unit	Micro-Operations, Functional Requirements, Processor	04			
		Control,				
		Hardwired Implementation, Micro-programmed Control				

6	Fundamentals	undamentals Parallel Architecture: Classification of Parallel Systems,					
	of Advanced	Flynn's Taxonomy, Array Processors, Clusters, and NUMA					
	Computer	Computers.					
	Architecture	Iultiprocessor Systems : Structure & Interconnection					
		Networks,					
		Multi-Core Computers: Introduction, Organization and					
		Performance.					
7	Case Study	Case study : Pentium 4 processor Organization and	02				
		Architecture					

Reference Books:

- 1. Modern Digital Electronics, R.P.Jain, 4e, Tata Mc Graw Hill.
- 2. Computer Organization & Architecture, William Stallings, 8e, Pearson Education.
- 3. Computer Architecture & Organization, John P. Hayes, 3e, Tata McGraw Hill.
- 4. Computer Organization, 5e, Carl Hamacher, Zconko Vranesic & Safwat Zaky, Tata McGraw Hill.
- 5. Digital Computer Fundamentals, Bartee C. Thomas , McGraw-Hill International Edition
- 6. Computer System Architecture, M. Morris Mano, Pearson Education.
- 7. Computer Architecture & Organization, Nicholas Carter, McGraw Hill.
- 8. Computer Architecture & Organization, 2e, Miles Murdocca & Vincent Heuring, Wiley India.

Assessment:

Internal:

Assessment consists of two tests (T1 and T2) .The final marks should be the average of the two tests.

End Semester Theory Examination: Guidelines for setting up the question paper.

- 1. Question paper will comprise of total six questions.
- 2. Question Number One should be compulsory.
- 3. All question carry equal marks.
- 4. Students can attempt any three from the remaining.
- 5. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3).

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.